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Summary: The dianion formed from 3(S),2(R)-3-hydroxyproline ethyl ester (5) with LDA, can be alkylated
with a variety of alkyl halides with net retention of configuration to give the corresponding a-alkylated-B-
hydroxyproline esters (6) in good yield. Copyright © 1996 Elsevier Science Ltd

Substituted proline derivatives are widely found as constituents of natural products.! For example, the
microbial products paraherquamide A (1)2 and lactacystin (2)3 contain densely functionalized o-substituted-
B-hydroxyproline moieties. As part of a general program? aimed at developing new methods to access o-
substituted amino acids in high optical purity, we have examined the enolate alkylation of 3(S), 2(R)-3-
hydroxyproline ethyl ester (5) which is readily available from racemic 3-ketoproline by Baker's yeast reduction
as described by Cooper, Gallagher and Knight.5 More specifically, ongoing work in these laboratories on the
total synthesis of paraherquamide A,52 mandated access to a B-functionalized a-prenylated proline derivative
corresponding to 1.
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There are no general synthetic methods available for the synthesis of optically active a-substituted-B-
hydroxyproline derivatives. Seebach” has developed a useful method to a-alkylate proline via formation of the
corresponding bicyclic pivaldehyde aminal, followed by enolate alkylation which, proceeds with net retention
of configuration; subsequent vigorous hydrolysis of the hindered, a-alkylated bicyclic aminal, provides the
corresponding a-substituted proline derivatives in high enantiomeric excess.

N-Boc-3(S), 2(R)-3-Hydroxyproline ethyl ester (5),> made by Baker's yeast reduction of N-Boc-3-
ketoproline ethyl ester (4) in >90% ee, was treated with 3 equivalents of LDA at -10°C in THF to form the
corresponding alkoxy enolate dianion. The subsequent alkylation was performed by cooling the mixture to
-30°C and a mixture of alkyl halide (1.5 eq) and HMPA (1.4 eq) was added. The reaction was allowed to
warm to 0 °C and then to 25 °C for 4 hours up to 1-2 days depending on the specific alkyl halide. Following
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standard work-up and extraction of the organic-soluble product, the a-alkylated products 6a-e (Scheme 1)
were purified by silica gel chromatography and were obtained in moderate-good yields. In each case, only one
diastereomer was formed, and little or no O-mono-alkylated or O-,C-dialkylated by-products were produced.
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For 6¢, 6d, and 6e, only the desired C-alkylation product was obtained, and there was no evidence for
the production of O-alkylation products. For 6a and 6b, there was less than 1-2% of the corresponding O-
alkylation products which, were easily removed by chromatography.

These highly stereoselective alkylation reactions all proceeded with net retention of configuration giving
single diastereoisomers as evidenced by 1H nmr. The relative stereochemistry of alkylation was rigorously
secured through a single crystal X-ray analysis for 6e (Figure 1). The absolute and relative stereochemistry of
6a was secured by chemical correlation.® The relative and thus, absolute stereochemistry for all alkylation
products 6a-e was assigned based on similarities in nmr spectroscopic characteristics and optical rotation.

The dianion derived from 5 (see structure A8) is expected to have a concave shape due to the Li-
coordinated bicyclo[4.3.0] ring system geometry; alkylation from the convex face opposite the alkoxy
substituent is the expected (and observed) diastereofacial bias.

Figure 1. X-ray Structure for 5e. Spheres are of fixed, arbitrary radius.
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General experimental procedure: A solution of 5 (104 mg, 0.4 mmol) in THF (0.4 mL) was cannulated over a
period of 2 min. to a magnetically stirred solution of LDA (1.2 mmol, 0.8M solution in THF) at -50°C. The
reaction mixture was stirred at -10 °C for 25 min., and then at 0 °C for 5 min. followed by the dropwise
addition of a solution of alkylating reagent (0.6 mmol) in HMPA (0.56 mmol) at -30 °C over a period of 2 min.
The mixture was stirred at 0°C for about 1 h; the ice bath was then removed and the mixture was allowed to
continue stirring at room temperature for 4 h (6a and 6b) or 48h (6¢c-e). The reaction mixture was quenched
with saturated aqueous NH4Cl, extracted with EtOAc (3 x 15 mL), washed with brine (5 x 10 mL), dried over
anhydrous Na2SOy, filtered and concentrated under reduced pressure. The crude residue was purified by
silica gel chromatography (eluted with hexane:EtOAc:MeOH, 5:3:0.5) to afford 6a-e.%-13

It is noteworthy that, neither p-elimination nor significant O-alkylation attended these transformations.
Further, the convenience and simplicity of performing the alkylations directly on substrate 5 without the need
for additional protection®? or manipulation should render this approach a highly attractive and general
method for synthesizing functionalized pyrrolidine derivatives. The application of this methodology to the
total synthesis of paraherquamide A (via 6a), lactacystin and related substituted proline derivatives and

pyrrolizidine alkaloids is under active investigation in these laboratories.
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